
1.

2.

3.

4.

5.
6.

ViewModel & LiveData

Download the full App created in this guide
https://drive.google.com/file/d/19hr4KqbyGgZvhjkx1M4rBZIZcxzJ5wbm/view?
usp=sharing

Download the Navigation View Model app from this guide
https://drive.google.com/file/d/144foCUlTej6Amnw4M9Zpa1o2dXldePr_/
view?usp=sharing

Steps:
Create a new project use the Empty Activity template

Make sure in your project structure dependencies that the view model
and live data are included as you can see in the photo attached. If not
Search for ViewModel and copy the latest dependencies into your app
Gradle file and sync. Copy also the LiveData dependencies we will
need it later on. Here is s link to https://developer.android.com/
jetpack/androidx/releases/lifecycle#declaring_dependencies

In the Activity layout file select the existing TextView widget and use
the Attributes tool window to change the id property to result_text.
Drag a Number (Decimal) view from the palette and position it above
the existing TextView. With the view selected in the layout refer to the
Attributes tool window and change the id to dollar_text. Drag a Button
widget onto the layout so that it is positioned below the TextView,
double-click on it and to edit the text and change it to read “Convert”.
With the button still selected, change the id property to convert_btn.
Click on the Infer constraints button to add any missing layout
constraints. If you don’t want to bother yourself with ui now, you can
copy the activity_main xml file located in our starter files.
Now add you Kotlin code to preform the conversion and show it in the
result Text View.
When all is done execute your program and check it.
Well done - now please rotate your screen - What Happened??

Our complete code so far should look like this:

Configuration changes
What Happened is that screen orientation changes is a configuration
change(like language, resolution, text size and much more) in order to load the
more specific resources for that configuration the system automatically sends a
kill signal to all of the activities and fragments displayed on the screen and
creates a new instances - when the new instance is created all the specific
resources are loaded by default. That is why all the information is gone.
In our case the data is simple but think of cases where we work with REST API
or with other remote databases - this requires refetching our data again and
again and can affect the user experience.

Old solution
Besides preventing the screen orientation changes in the manifest (by forcing
only one orientation for each activity) or telling the system we want to handle
this specific change ourselves (also in the manifest -
android:configChanges="orientation" for each activity and overriding the
onConfigurationChange methods inside the activities) - This are all ways to
bypass the default system behavior. If we we leave the default system behavior
that kills the activity, we should have overridden the onSaveInstaceState and
onRestoreInstanceState in the activity and pass the information manually with
the outgoing and incoming Bundle.

New Solution MVVM - Model - View - ViewModel

Please look at the attached photo from the android developers:

1.

As you can see a ViewModel is a special class that is aware of our lifecycle and
can outlive our views (Activities and Fragments). Because of this, it can stay
alive during configuration changes. This is the place where we save all of our
data. Meaning the activity and fragments will serve only for UI purposes and
will not hold any data. Instead, they will have a reference to their specific
ViewModel and it will save the data for them and outlives their configuration
changes. Only when the activity onDestroy() is called without onCreate()
immediately after it then the viewModel onCleared() function is called and the
instance holding our data is deallocated.

Our ViewModel is aware of our lifecycle when we pass LifeCycleOwner as us
and with the help of the LiveData it will update us automatically on any change
in it or when our new lifecycle event requires it.

Let’s implement it:
Create a new class and inherit from the ViewModel class. Please note

1.

2.

3.

4.

5.

you can also inherit from the AndroidViewModel in cases where the
Context is needed for example when working with databases.
Now we remove all the data and the data related functions to that
ViewModel: create a var property called result of type Double and
initialize it to 0.0, add a custom setter that receive the value multiply it
by the conversion rate and save the result in the field

Fragments and Activities needs to obtain a reference to the
ViewModel in order to be able to access the model and observe data
changes(later on). A Fragment or Activity maintains references to the
ViewModels on which it relies for data using an instance of
ViewModelProvider class. A ViewModelProvider instance is created via
a call to the ViewModelProviders(owner) method from within the
Fragment or Activity and pass the current Fragment or Activity as the
lifecycle owners. It returns a ViewModelProvider instance. Once the
ViewModelProvider instance has been created, the get() method can
be called on that instance passing through the class of specific
ViewModel that is required - the reflection class file but Use 'java'
property to get Java class corresponding to this Kotlin class. The
provider will then either create a new instance of that ViewModel
class, or return an existing instance.
In the button click set the result field in your viewModel and read the
updated value to the TextView. Please note that you also need to read
it on the onCreate() in case of configuration change (don’t worry, we
will remove all of this when we use LiveData).
Run the app and rotate the screen - The amount saved in the view
model and the activity is reading it in any new instance created!

Our complete code should look like this:

Please Note you can also use the KTX extensions to initialize the ViewModel
lazy.
Just add the:
 implementation("androidx.activity:activity-ktx:1.4.0”)

To your app Gradle file and write the following code:

If you want your view model in your Fragment:
 implementation("androidx.fragment:fragment-ktx:1.4.0”)

In conclusion this is how to get your View Model with the KTX in activity or
fragment:

●

●

●

●

●

Or like before you can mention the variable type and let the generic be inferred
from that.

LiveData & MutableLiveData
Thats all very nice but please note the repetitive code to read the data from the
ViewModel.
If we use LiveData or MutableLiveData (if the contaned data can change) we
can observe the return result and get notified automatically in two cases:
1. The inner value that the LiveData wraps changes.
2. A lifecycle event that requires refreshing the value occurred.

LiveData is a holder class which holds and updates the activity/fragment
keeping in mind about their state. It uses special function called observe which
will update activity/fragment instantly if anything changes in the LiveData. As
LiveData class get the latest updated data but couldn’t find activity or
fragment, then they just hold the data and next time when activity or fragment
is resumed the observer will fetch updated data itself and provide it to activity/
fragment. For example, an activity that was in the background receives the
latest data right after it returns to the foreground.
If an activity or fragment is recreated due to a configuration change, like device
rotation, it immediately receives the latest available data. our observers are
bounded to activity or fragment so they will be destroyed when the activity/
fragment is destroyed. No need to handle it manually.

LiveData has some characteristics according to Google I/O 2017:
LiveData is an observable data holder so it can be observed.
Its lifecycle aware that prevents memory leakage in such a situation
like configuration changes.
LiveData automatically manages subscriptions. If you are observing a
liveData you don’t need to unsubscribe. The right things will happen in
the right times.
Doesn’t matter how many observers you have or what state they are,
all of it are merged into one lifecycle.
It doesn’t have any activity or fragment inside it but it works with both

●

●

●

1.

2.

3.

of them.
Also liveData makes testing easy because it’s kind of Android free(it
can be tested with our device).
The LiveData instance is doing all the fetching and updating work on
the Dispatchers.IO and not on the main thread.

Adding LiveData
In the ViewModel class replace the type of the system result from
Double to MutableLiveData<Double> - it is mutable since the inside
value - the double can change. Remove the get and set and create a
new function called setValue that receives the new Double value and
update the value field of the LiveData with the converted amount

In the MainActivity remove all of the result Text View updates. Remove
also the viewModel update from before. Now in the onCreate() set an
Observer to the ViewModel’s LiveData field, passing it the activity as
the lifecycle owner (for all the reasons mentioned above) and in the
callback add the one and only result Text View update.

Now in the onClick just call the the ViewModel setValue function
passing it the user dollar value and Thats it - The LiveData will do the
rest!

ViewModel to Communicate between fragments and Their
hosting activity
ViewModel is an ideal choice when you need to share data between multiple
fragments or between fragments and their hosting Activity.

Lets look at this ItemViewModel which will be shared by both the Activity and
its hosted Fragment:

Please note that while the actual stored value is MutableLiveData the get only
return LiveData this ensures consistency of our data.

Both your fragment and its host activity can retrieve a shared instance of a
ViewModel with activity scope by passing the activity into the
ViewModelProvider constructor. The ViewModelProvider handles instantiating
the ViewModel or retrieving it if it already exists. Both components can observe
and modify this data (in this example we use the KTX extensions library to get a
delegate that initial their view model lazy):

Share data between fragments
Two or more fragments in the same activity often need to communicate with
each other. For example, imagine one fragment that displays a list and another
that allows the user to apply various filters to the list.

These fragments can share a ViewModel using their activity scope to handle
this communication. By sharing the ViewModel in this way, the fragments do
not need to know about each other, and the activity does not need to do
anything to facilitate the communication.

Notice that both fragments use their host activity as the scope for the
ViewModelProvider. Because the fragments use the same scope, they receive
the same instance of the ViewModel, which enables them to communicate back
and forth.

Saved State module for ViewModel
As mentioned before View Model can survive configuration changes and store
our data. Before using it we used to pass our data through savedInstanceState
Bundle. We can still use the onSavednstanceState() as a backup in case our
recreation comes from system-initiated process death. In that case our View
Models will be killed also.

But onSavednstanceState() function is from the Activity where the ViewModel
actually the one that stores or remembers the UI state so that can cause allot of
boilerplate code. To solve this the view model has its own Bundle that can store
data between sessions.

All you have to do is to get the SaveStateHandle in you ViewModel’s
constructor (We will see later on that it also has a default binding)

Don’t worry you don’t have to do any additional configuration because the
default ViewModel factory provides the appropriate SavedStateHandle to your
ViewModel. So just go ahead and retrieve your View model like you did before

The SavedStateHandle class is a key-value map that allows you to write and
retrieve data to and from the saved state through the set() and get() methods.
Additionally, you can retrieve values from SavedStateHandle that are wrapped
in a LiveData observable using getLiveData(). When the key's value is updated,
the LiveData receives the new value. Most often, the value is set due to user
interactions, such as entering a query to filter a list of data. This updated value
can then be used to transform LiveData.

By using SavedStateHandle, the query value is retained across process death,
ensuring that the user sees the same set of filtered data before and after
recreation without the activity or fragment needing to manually save, restore,
and forward that value back to the ViewModel.

Here is a simple example on how to save the current user in SaveStateHandle

●

●

●

Usually you will use LiveData in your ViewModel. For that you can use the
SavedStateHandle.getLiveData() method. Here’s an example of replacing
getCurrentUser with a LiveData, which allows for observation:

SavedStateHandle also has other methods you might expect when interacting
with a key-value map:

contains(String key) - Checks if there is a value for the given key.
remove(String key) - Removes the value for the given key.
keys() - Returns all keys contained within the SavedStateHandle.

For supported types please refer to https://developer.android.com/topic/
libraries/architecture/viewmodel-savedstate#types

Transform LiveData
You may want to make changes to the value stored in a LiveData object before
dispatching it to the observers, or you may need to return a different LiveData
instance based on the value of another one. The Lifecycle package provides the
Transformations class which includes helper methods that support these

scenarios.

In both map and switchMap there is a source (or trigger) live data, and in both
cases you want to transform it to another live data. Which one will you use -
depends on the task that your transformation is doing.

Map() is conceptually identical to the use in RXJava, basically you are changing
a parameter of LiveData in another one
SwitchMap() instead you are going to substitute the LiveData itself with
another one! Typical case is when you retrieve some data from a Repository for
instance and to "eliminate" the previous LiveData (to garbage collect, to make
it more efficient the memory usually) you pass a new LiveData that execute the
same action(getting a query for instance)

To understand that difference Let's take an example, there is a LiveData which
emits a string and we want to display that string in capital letters:

With map (in activity or fragment)

the function passed to the map returns a string only, but it's the
Transformation#map which ultimately returns a LiveData.

With SwitchMap (also in activity or fragment)

If you see Transformations#switchMap has actually switched the LiveData. So,
again as per the documentation The function passed to switchMap() must
return a LiveData object.

So, in case of map it is the source LiveData you are transforming and in case of
switchMap the passed LiveData will act as a trigger on which it will switch to
another LiveData after unwrapping and dispatching the result downstream.

Transformation are useful because they are computed lazily (meaning that they
are not calculated unless someone is observing their retuned LiveData) that’s
why they goes well with the observer’s lifecycle without any additional
configuration.

They are very useful in case where a change in one object should return
another one. For example if we have a UI component that gets and address and
return postal code, then the we must register to a LiveData returned from our
repository. We can do it like this:

Which is not a good idea for two reasons the first is that each time the activity
or fragment is recreated and we are doing a new database fetch because we
don’t store the old value but rather fetching it all over again and the second one
is that each time he calls this function he is actually registering a new Live data
which is costly.

What we should be doing in that case is:

In this case, the postalCode field is defined as a transformation of the
addressInput. As long as your app has an active observer associated with the
postalCode field, the field's value is recalculated and retrieved whenever
addressInput changes and that’s it, no extra calculations are done.

https://medium.com/androiddevelopers/viewmodels-with-saved-state-jetpack-
navigation-data-binding-and-coroutines-df476b78144e

ViewModel NavGraph Integration

Before we saw that we can share information between fragments and their
hosting activity using the shared View Model that we can access from all
fragments:

But what can we do if we want a shared view Model by some of the
fragments and not all of them, While they all share the same Activity?

The solution is to this is to create a nested navigation graph and share a view
model to that graph

The new Navigation API introduces ViewModels associated to a Navigation
Graph. In practice, this means you can take a collection of associated
destinations, such as an onboarding flow, a login flow, or a checkout flow; put
them into a nested navigation graph; and enable shared data just between
those screens.

To create a nested navigation graph, you can select your screens, right click,
and select Move to Nested Graph → New Graph:

In the XML view, note the id of the nested navigation graph, in this case
checkout_graph:

Once you’ve done this, you get the ViewModel using by navGraphViewModels:

But don’t forget to add the KTX dependency:
 implementation ‘androidx.navigation:navigation-fragment-ktx:2.4.2’

To check it in our project simply a create a ViewModel with a single int property

In each of the fragments get a reference to it by using the navGraphViewModel
and supply it with your root navigation graph id and simply Toast the value
stored in your view model

ViewModelProvider Factory

Sometimes we want to initiate our view model and pass parameters to his
constructor so that we can use it’s init function for data fetching request for
example.

We will see that Hilt can inject necessary components such as a repository that
handles network and database requests. This is the preferred way, And it will be
show in the Hilt Model.

However, if you don’t want to use Hilt or simply Dagger you can inherit from the
NewInstanceFactory which implement the ViewmodelProvider.Factory interface
and override it’s create() function. Pass your arguments to your factory
implementation and in it call you view model constructor with the parameters
and return your constructor initiated view model. Pass your implementation to
the ViemodelProvider constructor which also gets a factory method besides the
lifecycle owner and That’s it!

Let’s say we want to pass this view model a string so he can use it in his init
function to initiate a database fetch

Now we need to create his Factory implementation (we pass the factory params
to our view model constructor):

And in the fragment or activity we can do this:

Or use the KTX lazy delegate:

